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Al:~tract--The stability of a continuous flow stirred tank reactor with two consecutive reactions A ~ B 
�9 .-- C is studied with the direct method of Liapunov. Krasovskii's method with the identity matrix is used to ob- 
tain a Liapunov function in the analysis of the system with single or multiple steady states. The results show 
that this method is mathematically conservative as expected. From the viewpoint of practical stability, how- 
ever, this method predicts the regions of stability adequately. 

INTRODUCTION 

In the previous paper[l], we have investigated the 
sensitivity and the parametric sensitivity of a CFSTR 
with two consecutive reactions. In this study, we con- 
sider the stability of the reactor system by the direct 
method of Liapunov. The goal of this analysis is to ex- 
amine the local stability of a steady state and deter- 
mine the regions of stability. 

The region of stability about a steady state is defin- 
ed as the set of initial conditions from which the sys- 
tem trajectories will return to the steady state. When 
multiple steady states exist, there should be. separatri- 
ces which divide the whole phase space into the re- 
gion of stability for each steady state. The location of 
these separatrices for a single reaction system can be 
determined by the direct integration of the governing 
equations. But for the consecutive reactions system, 
extensive calculation is necessary to locate separatrices 
in the three-dimensional phase space. Therefore, Lia- 
punov direct method has a greater potential for treat- 
ing this three-dimensional problem. 

In the present paper, we apply the direct method of 
Liapunov for a unique steady state system considered 
in the previous paper. Although the method was found 
too conservative mathematically, this method can give 
meaningful results from the viewpoint of practical sta- 

bility. 

LIAPUNOV DIRECT METHOD 

In order to analyze the stability by the Liapunov sec- 
ond method, let us first consider a dynamic system 

which satisfies the equation 

d,~o (t) = F  [x~ (t) ~ (1) 
dt 

where F may be linear or nonlinear in x,~. We shall 
assume that this system has a steady state c. Then 

F ( c ) = 0 .  

To investigate the stability we transform the coordi- 
nates as x = xd.r and write the equation in x a follows: 

dx - - = f ( x ) ,  f ( 0 )=0 .  (2) 
dt 

Now we consider two regions, txl ~ o" and Ixl < E , 
inside a hypersphere R such that 

~<  ~<R.  

The stability of the system at a steady state x = 0  is 
defined as follows: 

[Definition 1] A steady state is stable if for every 
radius ~ there exists a radius 6 such that if a trajecto~ 
starts at a point x 0 inside the region of radius 6 (or on 
that hypersphere), then if will always remain in the 
hyperspherical region of radius ~ (or on that hyper- 
sphere). 

[Definition 2] A steady state is asymptotically 
stable if it is stable and if every trajectory starting in- 
side some hyperspherical region in the state .';pace 
converges to the origin as the time tends to infinity. 

We also need definitions on the positive definite- 
ness and the Liapunov function. 

[Definition 3] A scalar function V(x) is positive defi- 
nite when 

i) V(O) = O, 
ii) V(x)>0 for xeS ,  where x:~O and S refers to the 

state space, 
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iii) V(x) is continuous in S, and 
iv) OV(x)/Ox~, i= 1,... n are also continuous. 
If the inequality sign is reversed, V(x) is said to be 

negative definite. 
[Definition 4] A scalar function V(x) is said to be a 

Liapunov function when 
i) V(x) is positive definite, and 

ii) dV(x)/dt along a trajectory is negative definite 
or negative semi-definite (i.e.,<0). 

Then the stability and asymptotic stability the- 
orems are given as follows: 

[Theorem 1 ] Stability theorem: If there exists a Lia- 
punov function V(x) in some region S around a steady 
state, then the steady state is stable for all x 0 contained 
inS.  

[Theorem 2] Instability theorem: If V(x) is contin- 
uous and if dV(x)/dt along a trajectory is negative 
definite, then the system is unstable in that finite 
region of the state space for which V(x} is not positive 
semi-definite. 

The proof of these theorems will not be given here. 
If the stability theorems are satisfied everywhere in the 
state space, then the limitations to a regkm S imposed 
in the theorems may be deleted. The steady state O is 
then globally stable. 

From the above theorems, in principle, we can de- 
termine the stability of a steady state and the region of 
the stability around the steady state. Quite often, how- 
ever, it is very difficult to find a Liapunov function in 
the state space. The Liapunov direct method provides 
only the sufficient condition for the stability. Therefore 
the method gives inconclusive results when it is failed 
to find a Liapunov function. Therefore, the method 
should be applied with this in mind. 

KRASOVSKII'S METHOD 

Several methods have been suggested for obtaining 
the Liapunov function V(x). In this analysis of complex 
reaction systems, we decided to use Krasovskii's meth- 
od since this was successfully applied to single re- 
action systems by Perlmutter [2]. Kasovskii's Liapunov 
function has the following quadratic form in the f 
space: 

V(x) _ f r p f  (3) 

where the symmetric matrix P should be positive defi- 
nite in order that V(x) is positive definite 

The time derivative of V(x) along a trajectory is 

I) (x)= d V =  Of" p f  + f v p  Of (4) 
dt at at 

Noting that 

Of Of dx = J f  (5a) 
t ax dt 

and 

a f  T 
a t  = (Jf) r = f r J r '  (5b) 

we rewrite Eqn (5) in the following form: 

V ( x ) =  _ f r Q f  (6) 

where Q = -(PJ + j rp )  and J represents the Jacobian 
matrix af/ax.  Then, if Q is positive definite {1)'(x) is 
negative definite] in some region, V(x) is a Liapunov 
function and the steady state is stable in the region. In 
this analysis, we first choose a positive definite matrix 
P and then determine the region where ~x) is nega- 
tive definite. 

For the stability analysis of the consecutive reac- 
tion system by the Liapunov direct method, we write 
the governing equations given in the previous paper in 
dimensionless form: 

dX=l- (1+ D a L e x P ~ 7 , ~  ~) x = f ,  (7) 
d r  

~ =  Da~exp ~7~ ~ ) x-(l  + Da, exp ~7,K~- ] ) y 

=A (8/ 
dz z -1  
d~ = ( !+  ,%,) - (1+ ~)z+fllDalexp[7~-- ;x 

z - 1  
+,8,Da,  exp ~7, ~ ) Y=f3 (9) 

where the symbols are explained in the Nomencla- 
ture. 

In this study, V(x) is determined in the x space 
(concentration-temperature space) by a geometrical 
method as follows. For a given T, V is given by a sec- 
ond order polynomial with respect to C A and C 8 in 
the isothermal plane since f is a linear function in C A 
or C B. In other words, contours of constant Vwill have 
forms of conic sections in a given isothermal plane. ~x) 
is given by a third order polynomial since each ele- 
ment of J is also linear with respect to C A or C B. In 
determining the region where l?(x) is negative definite, 
the boundary where I~x)=0 at a given isothermal 
plane is determined first by the Cardan's method, and 
then the region is selected by examining the sign of 
~'(x) at C A = C 8 = 0. The maximum V(x) keeping V(x) 
negative definite is determined first at each isothermal 
plane, and then the least upper bound (lub) of V(x) is 
determined in the state space of CA, C~ and T. 

For the positive definite matrix P we choose the 
identity matrix I since ! is the simplest positive definite 
matrix and requires the minimum level of calculation. 
In Fig. 1, some of the contours of V{x) and the regions 
where ~x) are positive difinite are shown at some con- 
stant z planes when only one steady state exists. The nu- 
merical values of the parameters are given in Table 1. It 
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Fig. I. Determination of the region of stability by the geometrical method. 
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Table  1. Numer ica l  va lues  of the  s y s t e m  and oper-  

at ing p a r a m e t e r s  for a unique  s t e a d y  state 
s y s t e m  

Do I 0.27114 
)'j 33.303 
/~ 0.42941 
.~ 10.0 

Dgl 2 

72 

Zw 

0. ! 1795 

34 35 
0.21471 
1.{~1471 

should be noted in Fig. t thai the regiun where ~'>t) 
shrinks as z lakes a smaller w~.lue. Especially, when 
z < 1.06, the region is below y=  0, outside of the phys- 
ical values. When lhe dimensiouiess temperalure 2 is 
equal t,.) l, the ellipse V ( x ) I L l  is Iai~geril t~> the locus 
~,;'(x) = 0. When z > l  02, the ellipse IIx)= i).l reinaills 

in the region where ~'(x) is neRalive definite The size 
of the cross-section <~f the three dimensional surface 
V -  0.] lakes the largest value ;vhell z ].02 (See Fig. 
2 for the ellipses at several differeill z valt],'s). Be!~v,' 
lhis ,.'aiue the size shrinks rapidly and vani~-,hes '.~.'h,.'lL 
z ~ 0.99. Since the size of the chess seclion r i , ;  (I.I 
takes a smaller value as z approaches 0.99 ' ,b i le  keel,,- 
ins ;,- and y>0 .  and Ihe region where ~" is pusiiive 
definite retreats below y = I) as stated earlier, ~.;'<l) is 
oonfirn+ed in the regi,~,ri V(.,:) : O. ]'herefl~re, hJl>[t -+ 
(x)],:.<~= 0.l for all values (~f z and the stealy stab' is 
stable in the regi, w~ where ~lx)-<- ()1. 

The regiori ,.)f stability s~) del,,rmined is very ct,n- 
servalive malhenlaticaJlv fur l lw ,4vslein v./ith a tiliiqiJ(, 
steady slale In uther wc)rds, e,,e!~ ,,vhel~ Ihe slf~adv 
state s stable iri the whcHe re~ion uf ((i.~. ( 't: I') Sl TM (' 

the region delernfined by Krasovskifs method with 
lhe ideritity matrix would be too small. Hence this 
:nethod appears Io have very limited applicability. As 
ndicated above, lilts method gives only the sufficient 
condilion %r the stability. Moreover, it may be too con- 
,~;ervaliw ~ when found. However, we can give different 
interpretation from the viewpoint of practical slability. 
As shown in lhe previous paper, trajectories may de- 
viaie frcm~ the proper design criteria even when lee 
:~;teady slaie is unique. In this sense, guaranteeing Ihe 
Liniql.ieness may not be sufficiently safe in designing a 
reactor even when the steady state is asymtotically 
stable in the whole region. Conversely, when the sys- 
tem variables remain within the limits of design cri- 
teria, we can operate the reactor al a locally unstable 
steady siafe. Since there should exist small varialkms 
even in the case of so called steady operations, for ex- 
ample, a linfit cycle with a small anlplitude may be ac- 
ceptable Therefore we need a stability concept in 
practical sense. La Salle and Lefsche~z [3] introduced 
the concept of practical stability for {his purpose. In tile 
following, we apply the concept uf practical slability 
fur the analysis of the conseculive reactions system. 

In the previous; paper, we showed the existence of 
paramelric sensitivity depending upon the system and 
operating parameters for a given set of the initial con- 
dili,ms. In Fig. 1, the regions of initial conditions 
which lead to temperature runaway are shown at 
some isothermal planes. [n the figure we note that the 
temperature nJnaway regions expand as the initial 
temperattire takes higher values. The locus V(x)= 0.1 

Fig. 2. Reg ion  of a sympto t i c  stabi l i ty:  Project ions  of V-- 0. I on the  z = const ,  p lanes  and on  the  y - -  const ,  p lane.  
The upper  right c o r n e r  of the y =  0 .325  p lane  r e p r e s e n t s  the t empera ture  r u n a w a y  reg ion ,  ss: s t e a d y  state.  
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Table 2. Numerical values of the system and oper- 
ating parameters for a five steady states 
system 

Da~ 0.03738 Da 2 4.3487 x 10 -8 
71 53.433 72 81.412 
~l 0.22668 ~2 0.19430 
X 0.2 Z w 0.96503 

also moves toward that direction and does not inter- 
sect the temperature runaway region. Therefore we 
can conclude that the Liapunov function obtained by 
Krasovskii's method with the identity matrix appropri- 
ately predicts the region of practical stability especially 
at high concentrations of C A and C B. At low concentra- 
tions, the Liapunov function is not practically impor- 
tant as it is not necessary to consider the region of 
negative concentrations. Therfore, the region of sta- 
bility determined by this method may not be regarded 
too conservative. 

Fig. 3. Phase space plot for the five steady states 

system. Three dimensional trajectories are 

projected onto the coordinate planes. To dis- 
tinguish the different set of initial conditions 
with the same initial temperature, dotted and 
solid lines are used. The numerical values of 
the parameters are given in Table 2. 
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Next we apply this method to a system with five 
steady states. The numerical values of the system and 
operating parameters are shown in Table 2. To test the 
validity of the Krasovskii's method with the identity 
matrix, we first integrate the governing equations by 
the Runge-Kutta fourth order scheme to obtain several 
trajectories as shown in Fig. 3. However, we could not 
locate the separatrices even after extensive cah:ulation. 
Also, the trajectories which converge to the steady 
state SE(the highest temperature case) could not be ob- 
tained easily because of the phenomenon of parametric 
sensitivity. With the Krasovskii's method, the 
region of stability around the highest temperature 
steady state could not be obtained, either. This implies 
that Krasovskii's method with the identity matrix 
could be useful in the estimation of the region of prac- 
tical stability. 

SUMMARY 

In the present study, the stability of a CFSTR with 
two consecutive reactions has been analyzed by the 
Liapunov direct method. In obtaining a Liapunov func- 
tion, we have used Krasovskii's method with the iden- 
tity matrix. We tested this method for single and multi- 
ple steady states systems. In the former, asymptotic 
stability is guaranteed in the whole phase space so that 
the conservativeness of the method can be tested easi- 
ly. 

The result shows that the method is mathematical- 
ly too conservative as expected. From the viewpoint of 
practical stability, however, this method appears to 
predict the region of stability adequately. For robust- 
ness of this conclusion, more examples should be 
tested. 

NOMENCLATURE 

r : equilibrium state ofx a 
Da : DamkSler number 
F : vector function [see Eqn (1)] 
f : vector function [see Eqn (2)] 
I : identity matrix 
J : Jacobian matrix 
n : number of state variables 
P : positive definite matrix 
Q = _~, j  + j rp) 

R : radius of the hypersphere 
S : region around a steady state 
t : time 
V : scalar function or Liapunov function 
xa : state variable 
x : xa-c 



Stability of a CFSTR with Two Consecutive Reactions by the Liapunov Direct Method 205 

x : dimensionless concentration of A (scale: feed 
conc. of A) 

y : dimensionless concentration of B (scale: feed 
eonc. of A) 

z : dimensionless reactor temperature. (scale: feed 
temperature) 

Greek Letters 

7 

s 

parameter representing the heat of reaction 
parameter representing the activation energy 
small parameter 
small parameter 
parameter representing the heat transfer coetfi- 
cient 
dimensionless time (scale: mean residence 
time) 

w : wall 
1 : reaction A ~ B 
2 : reaction B ~ C  

Superscript  

T : transpose 
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Subscripts 

f : feed 
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